A Communication Model for Adaptive Service Provisioning in Hybrid Wireless Networks
نویسندگان
چکیده
Mobile entities with wireless links are able to form a mobile ad-hoc network. Such an infrastructureless network does not have to be administrated. However, self-organizing principles have to be applied to deal with upcoming problems, e.g. information dissemination. These kinds of problems are not easy to tackle, requiring complex algorithms. Moreover, the usefulness of pure ad-hoc networks is arguably limited. Hence, enthusiasm for mobile ad-hoc networks, which could eliminate the need for any fixed infrastructure, has been damped. The goal is to overcome the limitations of pure ad-hoc networks by augmenting them with instant Internet access, e.g. via integration of UMTS respectively GSM links. However, this raises multiple questions at the technical as well as the organizational level. Motivated by characteristics of small-world networks that describe an efficient network even without central or organized design, this paper proposes to combine mobile ad-hoc networks and infrastructured networks to form hybrid wireless networks. One main objective is to investigate how this approach can reduce the costs of a permanent backbone link and providing in the same way the benefits of useful information from Internet connectivity or service providers. For the purpose of bridging between the different types of networks, an adequate middleware service is the focus of our investigation. This paper shows our first steps forward to this middleware by introducing the Injection Communication paradigm as principal concept. Key-Words: Injection Communication, Hybrid Wireless Network, Ad-hoc Network, Backbone Network, Infrastructured Network
منابع مشابه
An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملNovel Model of Adaptive Module for Security and QoS Provisioning in Wireless Heterogeneous Networks
Considering the fact that Security and Quality-Of-Service (QoS) provisioning for multimedia traffic in Wireless Heterogeneous Networks are becoming increasingly important objectives, in this paper we are introducing a novel adaptive Security and QoS framework. This framework is planned to be implemented in integrated network architecture (UMTS, WiMAX and WLAN). The aim of our novel framework is...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملHierarchal Grouping Strategy with Adaptive Power Tuning in ZigBee Wireless Sensor Networks
Designing wireless sensor networks should meet appropriate parameters such as quality of service (QoS) defined by different users. The variable physical conditions of the environment, processing and transmission power limitations and limited communication capabilities are the most important obstacles that influence QoS parameters such as throughput, delay, reliability and network lifetime. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0706.1130 شماره
صفحات -
تاریخ انتشار 2004